
System Dependability Evaluation using AADL
(Architecture Analysis and Design Language)*

* This work is partially supported by 1) ASSERT (Automated proof based System and Software Engineering for Real-Time applications) - European

Integrated Project No. IST 004033. www.mayeticvillage.com/assert and 2) the European Social Fund.

Ana – Elena Rugina
LAAS-CNRS

7 avenue Colonel Roche
31077 Toulouse Cedex 4, France

aerugina@laas.fr

Abstract

In the context of an increasing complexity of new-
generation embedded real-time systems, the work
presented in this paper aims at facilitating the evaluation
of dependability measures of prime importance, such as
reliability or availability. To fulfil this objective, our
work focuses on defining a modelling framework
allowing the automatic generation of dependability-
oriented analytical models from high-level AADL models
that are easier to handle for users. This paper presents a
stepwise approach for system dependability modelling
and evaluation, using AADL and GSPNs (Generalised
Stochastic Petri Nets). The AADL dependability models
are built on the architecture skeleton by using features of
the AADL Error Model Annex, a draft annex to the
AADL standard. The modelling and evaluation approach
is illustrated on a simple example.

1. Introduction

In order to remain competitive with regards to costs
and delays, the European real-time embedded systems
industry must solve crucial problems related to the
increasing complexity of new-generation systems. These
problems are addressed in the FP6 European Integrated
Project ASSERT (Automated proof based System and
Software Engineering for Real-Time applications)
coordinated by the European Space Agency [4]. This
project aims mainly at i) identifying reference
architectures for different system families, ii) replacing
the classical system engineering approach by a proof-
based method and iii) demonstrating the validity of the

newly introduced concepts on real industrial case
studies. In this context, high guarantees on the
dependability properties are required at lower costs.
Mature dependability-oriented analytical modelling
techniques do exist ([1], [3], [6]). They are mainly based
on the use of Petri nets and Markov chains. Existing
tools support the analysis of such analytical models.
However, analytical modelling techniques require
substantial amount of training to be used effectively. On
the other hand, description languages such as UML
(Unified Modelling Language) and AADL (Architecture
Analysis and Design Language) have emerged. They are
more and more extensively used by industry. In the
context of the ASSERT project, we aim at developing a
modelling framework allowing the automatic generation
of dependability-oriented analytical models from high-
level AADL architecture models. This approach is meant
to hide the complexity of analytical models to the end-
user and, in this way, to facilitate the evaluation of
dependability measures, such as reliability, availability
and maintainability.

The remainder of the paper is organised as follows.
Section 2 presents possible links between AADL and
dependability-oriented analytical modelling techniques.
Section 3 is an overview of our stepwise approach for
system dependability modelling and evaluation, using
AADL. Section 4 illustrates our approach on a simple
example and section 5 concludes the paper.

2. AADL and analytical modelling

System analysis using AADL [8] can reveal the
impact of different architecture choices such as
scheduling policy or redundancy scheme on the system’s

architecture [5]. An architecture specification in AADL
describes how components are combined in sub-systems
and how they interact. Architectures are described
hierarchically.

AADL is a core language that can be extended.
Extensions can be analysis-specific notations that are
associated to components. This is the case of the AADL
error models. AADL error models are described in the
AADL Error Model Annex, which was created by the
AADL Working Group. This document is still a “work
in progress”1. It is to be published together with the next
version of the AADL standard and it is intended to
support qualitative and quantitative analysis of
dependability attributes. The AADL Error Model Annex
defines a sub-language that can be used to declare error
models within an error annex library. The AADL
architecture model serves as a skeleton for the error
models as they can be associated to AADL components.
They describe the behaviour of the components to which
they are associated in presence of internal faults and
repair events, as well as in presence of external
propagations from the component’s environment. An
architecture specification containing error models
provides a dependability-centered view of the system
and may be subject to a variety of analysis methods.
Classical dependability models such as fault trees or
Markov chains can be generated as specified in the
AADL Error Model Annex itself. Unlike Markov chains,
fault trees are not appropriate for modelling real-life
systems exhibiting stochastic dependencies that result for
example from error propagations between components.
The AADL Error Model Annex does not mention
possible generation of (Stochastic / Time) Petri nets. A
dependability model under the form of Generalised
Stochastic Petri Nets (GSPNs) has the advantage to
allow structural verification before deriving the Markov
chain from which the dependability measures are
evaluated. Also, it is widely recognised that GSPNs
facilitate the generation of complex Markov chains
characterising the behaviour of real-life systems. Our
research objective is to develop a modelling approach
allowing GSPN models to be automatically derived from
AADL models.

As stated in the introduction, we propose a stepwise
approach for system dependability modelling and
analysis using AADL. The ultimate aim is to evaluate
quantitative dependability measures. In the next section
we summarise this approach, which is then applied to a
simple example.

3. Overview of the modelling approach

This approach supposes that a description of the
system to be analysed is available. The system

1 Copies of the draft AADL Error Model Annex can be asked by e-

mail to info@aadl.info.

description must contain i) its structure, ii) its functional
behaviour and iii) its behaviour in presence of faults.
Interactions between architectural components of the
system must be analysed at this stage, as such
interactions induce dependencies between components
and consequently between their models.

An overview of our modelling approach, which is
composed of four main steps, is illustrated in Figure 1
and it is more detailed hereafter.

Figure 1: General approach

The first step is devoted to the modelling of the
system architecture in AADL (i.e., its structure in terms
of components and operational modes of these
components). Sometimes the AADL system architecture
is already available, as it may have been already built for
other analyses.

The second step concerns the modelling of the
behaviour of the system in presence of faults through
AADL error models associated to components of the
AADL architecture model. The set of error models
associated to components of the architecture forms the
AADL system error model. In order to master the
complexity and the evolution of the system error model,
this second step is incremental and consequently, multi-
phased. More concretely, in a first phase we model the
behaviour of each component, as if it were isolated from
its environment, in presence of its own faults and repair
events. Then, dependencies are modelled in an
incremental manner. In this way, the final model
represents the behaviour of each component not only in
presence of its own faults and repair events, but also in
its environment, i.e., faults and repair events in
components with which it interacts.

The third step aims at constructing a global analytical
dependability model that can be processed by existing
tools. The information that is necessary to the generation
of an analytical dependability model is extracted from
the AADL dependability model. The global analytical
dependability model is generated in the form of a
Generalised Stochastic Petri Net (GSPN) by applying
model transformation rules. Already existing
dependability analysis tools can then process the GSPN.
Note that this third step can also be incremental; as it is

possible to enrich the global analytical model each time
the second step is iterated. In this way, the GSPN model
can be validated progressively using classical methods
and tools. So, if validation problems arise at GSPN level
during phase i, only the part of the current AADL error
model corresponding to phase i is questioned. It is worth
stressing that in the case of an isolated system or in the
case of a set of systems considered to be independent,
the AADL to GSPN transformation is rather
straightforward. However, the transformation becomes
complex in the case of realistic systems formed of
dependent components as shown in [7]. Also, some of
the problems linked to the relationship between abstract
and concrete stochastic automata models obtained from
AADL error models have been mentioned in [2].

The fourth step is devoted to the GSPN model
processing that aims at obtaining dependability
measures. We stress that this fourth step is entirely based
on classical GSPN processing algorithms and existing
tools. This step includes both i) syntactic and semantic
validation of the model and ii) evaluation of quantitative
dependability measures.

4. Example

This section illustrates our approach on a simple
example. A more realistic one is presented in [7]. The
system considered here is formed of two communicating
software components. One of them is considered to be
completely dependent on the other one. The system is
described as follows.
• structure: two software components linked in order

to allow transfer of data from one to another;

• functional behaviour: every component has only one
operational mode;

• behaviour in presence of faults: every component
can be either error free, or failed. The dependent
component fails if the other component fails. The
components are restarted independently.

4.1. First step - AADL architecture model
Figure 2 shows the AADL architecture model of the

system described above. Two AADL components (S1
and S2) of type system are linked through a
unidirectional port connection, as the data transfer is
considered unidirectional. The behaviour in presence of
faults will be described in the second step by error
models associated to each component.

Figure 2: AADL architecture

4.2. Second step - AADL error models
An error model is specified under the form of one

error model type and one or more error model
implementations, declared to be suitable for different
dependability analyses. The error model type declares
error states, events and propagations. Error model
implementations declare transitions between error states,
as well as stochastic characteristics of error events and
out propagations. A simple error model that can be
associated to both AADL components is given in Error
Model 1.

error model forSoftware
features

-- Phase 1

Error_Free:initial error state;

Failed: error state;

Fail, Restart: error event;

-- Phase 2 (inter component dependency)
Software_KO: in out error propagation;
end forSoftware;

error model implementation
forSoftware.Basic
transitions

-- Phase 1

Error_Free-[Fail] -> Failed;

Failed-[Restart] -> Error_Free;

-- Phase 2 (inter component dependency)
Error_Free-[in Software_KO] -> Failed;
Failed-[out Software_KO] -> Failed;
properties

-- Phase 1

occurrence => poisson 10e-4

 applies to Fail;

occurrence => poisson 5

 applies to Restart;

-- Phase 2 (inter component dependency)
occurrence => fixed 1 applies to Software_KO;
end forSoftware.Basic;

Error Model 1: Simple error model

The error model type forSoftware, from Error Model
1, specifies two error states: Error_Free (the initial state)
and Failed, two error events: Fail and Restart, and one
in out error propagation Software_KO. The error model
implementation forSoftware.Basic, from the same Error
Model 1, declares transitions between the states declared
in the error model type forSoftware. Transitions are
triggered by error events and propagations (named
between right brackets between the source and the
destination state). The error model implementation
forSoftware.Basic associates occurrence properties to
error events (Fail and Restart follow Poisson

distributions) and propagations (Software_KO occurs
with a probability of 1).

This step is two-phased: error states and error events
(with associated stochastic properties) are declared
together with transitions triggered by these events in a
first phase. The propagation Software_KO together with
its stochastic property and with the transitions that it
triggers is introduced in a second phase to explicit the
unidirectional dependency from one software component
to the other one, as highlighted in Error Model 1.

4.3. Third step - AADL model transformation
As the previous step, this third step is two-phased.

Error states and transitions triggered by error events are
transformed respectively into places and transitions of
the Petri net in a first phase. Transitions triggered by
error propagations are transformed in a second phase.
Also, sub models obtained from the error models
associated to the two AADL components are merged. In
a general case, the sub model composition is a rather
complicated task. However, in this simple example, the
composition is done by matching the Software_KO out
propagation from the error model associated to
component S1 to the in propagation Software_KO from
the error model associated to component S2. The
resulting GSPN is shown in Figure 3. Blocks S1 and S2
correspond to the AADL sub models for the two
software components. The interface block describes the
interaction between these two components.

Figure 3: GSPN model

4.4. Fourth step – model processing
This step is not detailed here as it is supposed to be

completely automated by using existing analytical model
processing tools proven to be efficient (i.e., SURF2 -
www.laas.fr/surf/surf.html).

5. Conclusion

This paper presented a stepwise approach for system
dependability modelling and evaluation using AADL.
The aim of this approach, which was illustrated on a
simple example, is to ease the task of evaluating
dependability measures, by hiding the complexity of
classical analytical models to the end-user. Our approach

has two main characteristics: i) it is incremental, as it
needs to support and trace model evolution and ii) it is
based on model transformation, from AADL
dependability models (architecture + dependability-
related information) to GSPNs that can be processed by
existing tools.

After having defined the approach, the main purpose
of the work carried out until now was to assess its
feasibility. So, we applied it to a complex enough case
study, presented in [7]. The next step of the work
concerns the formalisation of transformation rules in
order to automate model transformation.

Acknowledgements

I would like to thank my research advisors, Karama
Kanoun and Mohamed Kaâniche, for their support and
assistance.

References

[1] C. Betous-Almeida and K. Kanoun, “Construction and
stepwise refinement of dependability models”,
Performance Evaluation, 56 (1-4), pp.277-306, 2004.

[2] P. Binns and S. Vestal, “Hierarchical composition and
abstraction in architecture models”, in 18th IFIP World
Computer Congress, ADL Workshop, (Toulouse,
France), pp.43-52, 2004.

[3] A. Bondavalli, I. Mura and K. S. Trivedi, “Dependability
Modelling and Sensitivity Analysis of Scheduled
Maintenance Systems”, in 3rd European Dependable
Computing Conference (EDCC-3), (Prague, Czech
Republic), pp.7-23, Springer, 1999.

[4] E. Conquet and P. David, “Preparing the System and
Software engineering of the 21st century for critical
systems with the ASSERT project”, in Fifth European
Dependable Computing Conference, Supplementary
Volume, (Budapest, Hungary), pp.27-32, 2005.

[5] P. H. Feiler, D. P. Gluch, J. J. Hudak and B. A. Lewis,
“Pattern-Based Analysis of an Embedded Real-time
System Architecture”, in 18th IFIP World Computer
Congress, ADL Workshop, (Toulouse, France), pp.83-91,
2004.

[6] K. Kanoun and M. Borrel, “Fault-tolerant systems
dependability. Explicit modeling of hardware and
software component-interactions”, IEEE Transactions on
Reliability, 49 (4), pp.363-376, 2000.

[7] A. E. Rugina, K. Kanoun, M. Kaâniche and J. Guiochet,
Dependability modelling of a fault tolerant duplex
system using AADL and GSPNs, LAAS-CNRS,
N°05315, 2005.

[8] SAE-AS5506, Architecture Analysis and Design
Language, Society of Automotive Engineers, 2004.

